Loja
Apoio: Roche

Saiba onde descartar seus resíduos

Verifique o campo
Inserir um CEP válido
Verifique o campo

Investigação está sendo realizada em diversas regiões do Brasil por cientistas ligados ao Centro de Pesquisa para Inovação em Gases de Efeito Estufa da USP

Se preferir, vá direto ao ponto Esconder

Por Agência FAPESP* – Os sistemas agrícolas integrados apostam na diversidade e na rotatividade de culturas em uma mesma área de produção. De olho nessas características, pesquisadores do Centro de Pesquisa para Inovação em Gases de Efeito Estufa (RCGI) investigam se esses modelos de amplo aproveitamento do solo são capazes de sequestrar mais dióxido de carbono (CO2) da atmosfera em relação ao sistema tradicional.

Carbono azul
Carbono azul: o que é e importância

O RCGI é um Centro de Pesquisa em Engenharia (CPE) constituído com apoio da FAPESP e da Shell na Escola Politécnica da Universidade de São Paulo (Poli-USP).

“Os sistemas agrícolas integrados têm grande potencial de ajudar nosso país a cumprir os compromissos climáticos firmados perante o Acordo de Paris, em 2015, e atualizados na COP 26, a Conferência das Nações Unidas sobre as Mudanças Climáticas, realizada em 2021, em Glasgow, na Escócia. Eles também podem contribuir para que o Brasil produza mais alimento nas próximas décadas”, aponta Maurício Roberto Cherubin, professor da USP e coordenador do projeto.

De acordo com o pesquisador, os sistemas integrados são caracterizados pela variedade. “Em uma mesma área podemos ter em uma época do ano uma cultura de grãos, como soja e milho. Após a colheita, na entressafra, é possível cultivar uma forrageira que serve de pasto para os animais e, assim, a prática contribui para a produção de carne. Sem contar que em sistemas mais complexos pode-se colocar árvores dentro da lavoura, o que possibilita, de tempos em tempos, produzir madeira”, explica Cherubin.

Com duração prevista de cinco anos, o projeto foi iniciado em 2021 e acontecerá em quatro fases. Na primeira etapa, os pesquisadores levantaram a bibliografia disponível em nível mundial a respeito de sistemas agrícolas integrados.

“É curioso observar que no Brasil essa prática surgiu nas últimas duas décadas pelas mãos dos produtores, que perceberam que poderiam lucrar em termos financeiros caso aproveitassem a terra de forma mais ampla”, conta Cherubin. “Em função dessa demanda, a produção de trabalhos acadêmicos no país sobre a temática começou a partir da década de 2000. Nos últimos cinco anos, as pesquisas passaram a investigar a contribuição ambiental desses sistemas.”

No momento, os pesquisadores realizam o segundo módulo do projeto, que consiste em visitar locais no Brasil onde essa prática agrícola já está em andamento. Segundo o especialista, estima-se que sistemas agrícolas integrados ocupem hoje cerca de 15 milhões de hectares no país, área equivalente a cinco vezes o tamanho da Bélgica.

“Esse procedimento é adotado em quase todos os Estados brasileiros, mas principalmente em Mato Grosso, Mato Grosso do Sul, São Paulo, Paraná, Rio Grande do Sul e na região conhecida como Matopiba, uma das maiores fronteiras agrícolas do mundo situada na interface do Maranhão, Tocantins, Piauí e Bahia”, relata o professor.

Radiografia do processo

Além de investigar a captura de CO2 pela vegetação dos sistemas agrícolas integrados, os pesquisadores pretendem compreender a participação do solo nessa história. “O dióxido de carbono capturado pelas plantas é transformado pelos organismos do solo. Parte dele é acumulado no solo na forma de compostos orgânicos. Alguns desses compostos se ligam aos minerais do solo e mantêm o carbono estabilizado por um longo tempo”, diz Cherubin.

“Outra parte desse carbono pode ser emitido do solo para a atmosfera na forma de CO2 ou metano (CH4), ambos considerados gases do efeito estufa. Outro exemplo é o óxido nitroso (N2O), que, apesar de não conter carbono na constituição, tem relação íntima com o ciclo desse elemento e com a agricultura. Trata-se de um gás de efeito estufa de grande impacto para o aquecimento global. Para se ter ideia, se o CH4 tem 28 vezes mais potencial de aquecer o planeta do que o CO2, o N2O oferece 265 vezes mais risco nesse sentido”, explica o especialista.

Para compreender como se dá a retenção do carbono no solo e quantificar as emissões dos gases de efeito estufa, os pesquisadores vão utilizar técnicas baseadas em radiação síncrotron, tipo especial de luz que permite investigar a estrutura da matéria na escala dos átomos e das moléculas. A fim de que isso aconteça, o projeto utilizará a estrutura do Sirius, o acelerador de partículas de última geração que emite esse tipo de luz e está localizado no Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), em Campinas.

Carbono equivalente: o que é e como funciona?

No próximo passo do projeto, cujo apelido é Ag4C, sigla em inglês para “agricultura para carbono”, os pesquisadores aplicarão modelagem para avaliar os dados coletados durante o estudo de campo. “A ideia é usar uma série de modelos de predição para vislumbrar o potencial de outras regiões no país a partir de dados que medimos em áreas estratégicas pelo Brasil”, sinaliza Cherubin. “Esses números podem ser utilizados pelo país em negociações internacionais e também contribuir para a definição de políticas públicas.”

* Com informações da Assessoria de Comunicação do RCGI.


Utilizamos cookies para oferecer uma melhor experiência de navegação. Ao navegar pelo site você concorda com o uso dos mesmos. Saiba mais