Um estudo conduzido na Universidade Estadual de Campinas (Unicamp) revelou que o triclosan – composto antimicrobiano encontrado em sabonetes, cremes dentais, desodorantes e muitos outros produtos – é capaz de inibir genes-alvo do parasita causador da malária em duas fases cruciais do seu ciclo de vida em humanos: o hepático, quando se reproduz nas células do fígado, e o eritrocitário, nas células do sangue.
Apoiada pela FAPESP, a pesquisa foi feita em colaboração com as Universidades de Cambridge e de Manchester, no Reino Unido, além da Universidade de Gotemburgo, na Suécia, e da Universidade de São Paulo (USP). Resultados foram divulgados na revista Scientific Reports.
No texto, os autores destacam que o triclosan, usado há 40 anos, é considerado seguro pelas autoridades sanitárias. O fato de a substância combater até mesmo parasitas resistentes aos medicamentos hoje usados, como mostrou o novo estudo, o torna um “excitante candidato para o desenvolvimento de um antimalárico com ação tanto sobre a fase aguda da doença [no sangue] quanto sobre a fase crônica [no fígado]”.
“O composto em si poderia ser uma opção terapêutica, porém acredito ser mais interessante desenvolver moléculas análogas, ou seja, com pequenas alterações estruturais que podem torná-lo ainda mais eficiente no combate ao parasita”, disse Elizabeth Bilsland, professora do Departamento de Biologia Estrutural e Funcional do Instituto de Biologia da Unicamp e colíder do projeto, à Agência FAPESP.
Causada por protozoários do gênero Plasmodium, a malária mata por ano quase meio milhão de pessoas em todo o mundo – a grande maioria no continente africano. Quase 90% dos casos fatais são atribuídos à infecção pelo P. falciparum. No Brasil, 85% dos casos são causados pela espécie P. vivax, que, embora induza sintomas mais brandos, pode permanecer dormente no fígado durante anos e provocar recaídas, dificultando a erradicação da enfermidade por aumentar o tempo que o doente permanece no estágio contagioso.
A tafenoquina e a primaquina são as principais drogas usadas hoje para tratar a fase hepática da malária vivax – em associação com outros fármacos que atacam o parasita na fase eritrocitária.
No entanto, cerca de 10% dos doentes apresentam uma mutação no gene que codifica a enzima G6PD e desenvolvem efeitos colaterais severos durante o tratamento com esses dois fármacos. Nos casos mais graves, pode ocorrer a destruição das células vermelhas do sangue (hemólise) e até mesmo a morte.
“É urgente o desenvolvimento de novos medicamentos capazes de atacar o Plasmodium tanto na sua fase hepática quanto na eritrocitária, pois existem relatos de parasitas resistentes a cada um dos antimaláricos no mercado. Tendo diferentes alvos, a chance de desenvolvimento de resistência ao medicamento é menor”, disse Bilsland.
Dados da literatura científica de 2001 já mostravam que o triclosan é capaz de inibir, no Plasmodium, a ação de uma enzima chamada FAS-II, além de curar camundongos com malária.
No entanto, estudos subsequentes revelaram que essa enzima não é essencial para o crescimento do parasita em cultura. Como explicou Bilsland, os testes haviam sido feitos com protozoários na fase eritrocitária.
“Na verdade, a FAS-II só é importante para a sobrevivência do parasita na fase hepática. Agora, mostramos por meio de ensaios com leveduras que o triclosan também inibe a enzima DHFR, um alvo essencial para a fase eritrocitária do parasita”, contou a pesquisadora.
A descoberta do segundo mecanismo de ação do triclosan pelos grupos da Unicamp, Manchester e Cambridge ocorreu quase por acaso, quando conduziam uma triagem em larga escala de compostos aprovados para uso humano pelo FDA (Food and Drug Administration, a agência de vigilância sanitária norte-americana). O objetivo era descobrir drogas capazes de inibir a enzima DHFR de Plasmodium.
“Desenvolvemos um método no qual substituímos genes de leveduras por genes humanos ou por genes-alvo de parasitas causadores de doenças como malária, Chagas e esquistossomose. Marcamos nossas linhagens com proteínas fluorescentes de cores variadas. Desse modo, por exemplo, sabemos que a levedura com gene humano é vermelha, a com gene de Plasmodium é azul, a com gene de Trypanosoma é verde e a com gene de Schistosoma, amarela”, contou Bilsland.
Assim, acrescentou, é possível cultivar as diferentes variedades de leveduras modificadas em um mesmo poço de uma placa com centenas de poços e tratá-las simultaneamente com milhares de drogas, graças a um robô cientista conhecido como “Eve” desenvolvido pelo grupo do professor Ross King, da Universidade de Manchester.
“Observamos em quais casos a levedura com o gene de Plasmodium morreu e a com gene humano sobreviveu. Assim, triamos compostos com ação especificamente antiparasitária. Nosso melhor resultado, tanto com DHFR normal como resistente a antimaláricos, foi com o triclosan”, explicou Bilsland.
Diversos ensaios bioquímicos, simulações computacionais e ensaios com leveduras foram realizados para validar a ação do triclosan contra a enzima DHFR. Os resultados indicam que a substância é eficaz até mesmo em parasitas resistentes à pirimetamina, reconhecido inibidor de DHFR usado na prevenção e tratamento de malária.
“Mostramos ainda que o triclosan tem 20 vezes mais afinidade pela enzima do parasita do que pela equivalente humana – uma boa característica para um candidato a fármaco”, disse Bilsland.
O Laboratório de Biologia Sintética em que os testes de otimização do triclosan como antimalárico estão sendo feitos foi montado na Unicamp com auxílio do Programa de Apoio a Jovens Pesquisadores da FAPESP.
Uma das vantagens de usar leveduras modificadas como modelo de estudo é eliminar a necessidade de cultivar os parasitas in vitro – o que, segundo Bilsland, no caso do P. vivax é virtualmente impossível.
“Ele não cresce em condições de laboratório, então é preciso extrair sangue de pacientes infectados e fazer os ensaios no local [Amazônia, no caso brasileiro] durante apenas um ou dois dias no máximo”, explicou.
A mesma metodologia tem sido empregada para buscar novos compostos capazes de inibir a expressão de genes importantes de parasitas como Trypanosoma cruzi (doença de Chagas), Trypanosoma brucei (doença do sono) e Brugia malayi (elefantíase) – além de bactérias como a Staphylococcus aureus.
Em outra linha de pesquisa, o grupo da Unicamp tem se dedicado a modificar as características da membrana plasmática de leveduras para deixá-la parecida com a membrana de células humanas. “A ideia, nesse caso, é investigar como os fármacos entram e saem do sistema nervoso central humano. Esse conhecimento é importante para o desenvolvimento de drogas capazes de tratar doenças neurodegenerativas, bem como a fase cerebral da malária ou da doença do sono, que são as mais fatais”, disse Bilsland.
Utilizamos cookies para oferecer uma melhor experiência de navegação. Ao navegar pelo site você concorda com o uso dos mesmos.
Saiba mais